



## 2023 Glenwood High School Year 12 – Trial HSC Examination Assessment Task 4

# Mathematics Extension 2

| General<br>Instructions | <ul> <li>Reading Time – 10 minutes</li> <li>Working time – 3 hours</li> <li>Write using black pen</li> <li>NESA approved calculators may be used</li> <li>A reference sheet is provided</li> <li>For questions in Section II, show relevant mathematical reasoning and/or calculations</li> </ul> |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Total marks:<br>100     | Section I – 10 marks (pages 3 – 7) * Attempt Questions 1-10 * Allow about 15 minutes for this section                                                                                                                                                                                             |
|                         | <ul> <li>Section II – 90 marks (pages 8 – 15)</li> <li>* Attempt Questions 11-16</li> <li>* Allow about 2 hours and 45 minutes for this section</li> </ul>                                                                                                                                        |

Blank page

#### Section I

10 marks Attempt Questions 1 – 10. Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for Questions 1 - 10.

1. Which of the following is a solution to the equation  $|e^{-i\theta} - 1| = 2$ ?

- A.  $\theta = -\frac{\pi}{2}$
- B.  $\theta = 0$
- C.  $\theta = \frac{\pi}{2}$
- D.  $\theta = \pi$

2. What is the contrapositive of the following statement?

"If you're happy and you know it, then you will clap your hands."

- A. If you clap your hands, then you're happy and you know it.
- B. If you clap your hands, then you're either not happy or you don't know it.
- C. If you don't clap your hands, then you're not happy and you don't know it.
- D. If you don't clap your hands, then you're either not happy or you don't know it.

3. It is given that *a*, *b*, *c* and *d* are consecutive integers.

Which of the following statements may be false?

- A. *abcd* is divisible by 3
- B. *abcd* is divisible by 8
- C. a + b + c + d is divisible by 2
- D. a + b + c + d is divisible by 4

Vectors  $\underline{u}$  and  $\underline{v}$  have components  $\begin{pmatrix} 1\\ 3\\ 2 \end{pmatrix}$  and  $\begin{pmatrix} 3\\ t\\ 4 \end{pmatrix}$  respectively.

The following statements are made about  $\underline{u}$  and  $\underline{v}$ :

Statement I: When t = 5,  $\underline{u}$  and  $\underline{v}$  are parallel

Statement II: When 
$$t = \frac{1}{5}$$
,  $v$  is a unit vector

Which of the following is true?

4.

- A. Both statements are incorrect.
- B. Only Statement I is correct.
- C. Only Statement II is correct.
- D. Both statements are correct.
- 5.  $\int \tan^3 x \, dx$  can be evaluated as:
  - A.  $\frac{1}{2} \tan^2 x \ln |\cos x| + C$
  - B.  $\frac{1}{2} \tan^2 x + \ln |\cos x| + C$

C. 
$$\frac{1}{2} \tan^2 x + C$$

D.  $\frac{1}{4}\tan^4 x + C$ 

6. Which vector equation best describes the curve below?



- A.  $r(t) = \sin t \, \underline{\imath} + \cos t \, \underline{\jmath} + t^2 \, \underline{k}$
- B.  $r(t) = \sin t \, \underline{\imath} + \cos t \, \underline{\jmath} + \ln t \, \underline{k}$
- C.  $\underline{r}(t) = \cos t \, \underline{\imath} + \sin t \, \underline{\jmath} + t \, \underline{k}$
- D.  $r(t) = \cos t \, \iota + \sin t \, j + 2^t k$

7. The complex number z is shown below.



Which of the following is the graph of  $i\bar{z}$ ?



8. The velocity v cm/s of a particle moving along the x –axis is given by

 $v^2 = -4x^2 + 24x - 34$ 

where x is in centimetres.

Given the particle is moving in simple harmonic motion, find the centre of the motion.

- A. -34
- В. —З
- C. 3
- D. 4

9.

The diameter of a sphere is a line segment joining (2, -6, 1) and (-6, a, 9).

Given the volume of the sphere is  $288\pi$  cubic units, find a possible value for *a*.

- А. –2
- B. 0
- C. 2
- D. 6
- 10. f(x) and g(x) are continuous functions such that:

$$f(x) = f(1 - x)$$
  

$$g(x) + g(1 - x) = 2$$
  

$$\int_{0}^{1} f(x) dx = \int_{0}^{1} f(1 - x) dx$$

Which one of the following is equivalent to:

$$\int_0^1 f(x) g(x) dx$$

- A.  $\int_0^1 f(x) \, dx$
- B.  $2\int_0^1 f(x) dx$
- C.  $3\int_0^1 f(x) dx$
- D.  $4\int_0^1 f(x) dx$

#### Section II

#### 90 marks

#### Attempt Questions 11 – 16.

#### Allow about 2 hours and 45 minutes for this section.

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11 - 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (14 marks) Use a new writing booklet.

| (a) | (i) Express $z = \frac{1+\sqrt{3}i}{1+i}$ in the form $r(\cos\theta + i\sin\theta)$ . | 2 |
|-----|---------------------------------------------------------------------------------------|---|
|     | (ii) Find the smallest positive integer $n$ such that $z^n$ is a real number.         | 2 |
|     |                                                                                       |   |
| (b) | Find the values of $a$ and $b$ such that $(3, a, 5)$ divides the line segment joining | 3 |
|     | (-1, 0, 3) and $(5, 3, b)$ in the ratio 2: 1.                                         |   |
|     |                                                                                       | 2 |
| (c) | (1) Find the square roots of $-3 - 4l$ .                                              | Z |
|     | (ii) Hence, or otherwise, solve the equation $z^2 - 3z + (3 + i) = 0$ .               | 2 |
|     |                                                                                       |   |
|     |                                                                                       |   |

(d) A particle travels along the x –axis so that the relationship between its velocity v cm/s and displacement x cm is given by v = -0.3x.

| (i)  | Show that the particle does not exhibit simple harmonic motion. | 1 |
|------|-----------------------------------------------------------------|---|
| (ii) | The initial displacement of the particle is $x = 6$ cm.         | 2 |

How long does it take for the particle to have a displacement of 2 cm?

#### End of Question 11

Question 12 (15 marks) Use a new writing booklet.

(a) (i) Write the following mathematical statement in words. 1
∀ k ∈ Z<sup>+</sup>, ∃ x ∈ Z such that x<sup>2</sup> + x - k = 0
(ii) Use proof by contradiction to prove the following statement: 3
"If p is odd, then x<sup>2</sup> + x - p<sup>2</sup> = 0 has no integer solution."
(b) Two lines, l<sub>1</sub> and l<sub>2</sub>, are given below:

$$l_1: \underline{r}(t) = 2\underline{i} + 3\underline{k} + t(\underline{i} - \underline{j} + 2\underline{k})$$
$$l_2: \frac{x-2}{2} = \frac{y+1}{-1} = \frac{z-4}{3}$$

- (i) Show that  $l_1$  and  $l_2$  intersect.
- (ii) Find the acute angle between  $l_1$  and  $l_2$ , to the nearest minute.

(c) A particle is moving in simple harmonic motion in a straight line with amplitude 8 metres. The speed of the particle is 12 m/s when it is 4 metres from the centre of its motion.

Find the period of the motion.

#### Question 12 continues on page 10

2 2

(d)

(i) Determine the values a, b and c such that

$$\frac{1}{x(1+x^2)} \equiv \frac{a}{x} + \frac{bx+c}{1+x^2}$$

(ii) Hence, find

$$\int \frac{\arctan x}{x^2} dx$$

End of Question 12

Question 13 (16 marks) Use a new writing booklet.

- (a) A particle is projected along the x –axis with speed u and has acceleration given by  $a = -kv^3$ , k > 0.
  - (i) Show that the particle's velocity is given by

$$v = \frac{u}{1 + kux}$$

where x is the displacement from the starting point.

- (ii) Find how long it takes for the particle to slow down to a speed of  $\frac{u}{3}$ . Write your answer in terms of k and u.
- (b) Using an appropriate substitution, evaluate

$$\int \frac{3}{x^2 \sqrt{x^2 - 9}} dx$$

- (c) The complex number z is represented by the point P. Given that P moves in a way such that  $\frac{z-2}{z-i}$  is purely imaginary, sketch the locus of P, show any intercepts and any key features.
- (d) Let  $\omega$  be a non-real fifth root of unity.
  - (i) Show that  $\omega^4 + \omega^3 + \omega^2 + \omega + 1 = 0.$  1
  - (ii) Prove that  $\omega \omega^4$  is a root of the equation  $z^4 + 5z^2 + 5 = 0$ . 3

#### End of Question 13

3

2

3

Question 14 (16 marks) Use a new writing booklet.

(a) Let  $a_n$  be the sequence defined recursively by  $a_0 = 0$  and  $a_n = a_{n-1} + 3n^2$  3 for all integers  $n \ge 1$ .

Use mathematical induction to prove that for all integers  $n \ge 0$ ,

$$a_n = \frac{n(n+1)(2n+1)}{2}$$

(b) The diagram below shows  $\triangle ABC$ . Points *D* and *E* bisects *AB* and *BC* respectively. Let  $\overrightarrow{DB} = u$  and  $\overrightarrow{BE} = v$ .



(i) The lines AE and CD intersect at P such that  $\overrightarrow{AP} = k\overrightarrow{AE}$ , 0 < k < 1. Using vector methods, show that  $k = \frac{2}{3}$ .

2

(ii) Let F be the point that bisects AC.

Show that *B*, *F* and *P* are collinear.

#### Question 14 continues on page 13

(c)

Given  $z = \cos \theta + i \sin \theta$ :

(i) Prove 
$$z^n + \frac{1}{z^n} = 2\cos n\theta$$
. 2

(ii) Hence, by considering the expansion of  $\left(z + \frac{1}{z}\right)^4$ , show that

$$\cos^4\theta = \frac{1}{8}\cos 4\theta + \frac{1}{2}\cos 2\theta + \frac{3}{8}$$

(iii) Hence, evaluate

$$\int_0^{\frac{\pi}{2}} \cos^4\theta \, d\theta$$

### End of Question 14

2

Question 15 (15 marks) Use a new writing booklet.

(a) Find the exact area bounded by the curve  $y = 2x \ln x$ , the x -axis and the lines  $x = \frac{1}{e}$  and x = e.

(b) (i) Prove by mathematical induction, for  $z \neq 1$ ,

$$1 + 2z + 3z^{2} + \dots + nz^{n-1} = \frac{1 - (n+1)z^{n} + nz^{n+1}}{(1-z)^{2}}$$

(ii) Hence, or otherwise, prove that

$$2 + \frac{3}{2} + \frac{4}{2^2} + \dots + \frac{n}{2^{n-2}} = 6 - \frac{n+2}{2^{n-2}}$$

(iii) Show that, when  $z \neq 0$ ,

$$1 + 2z + 3z^{2} + \dots + nz^{n-1} = \frac{z^{-1} - (n+1)z^{n-1} + nz^{n}}{z^{-1} - 2 + z}$$

(iv) Hence, by writing  $z = \cos \theta + i \sin \theta$  and using De Moivre's Theorem, show that

$$\sum_{k=1}^{n} k \cos(k-1)\theta = \frac{(n+1)\cos(n-1)\theta - n\cos n\theta - \cos \theta}{2(1-\cos \theta)}$$

End of Question 15

1

3

3

4

Question 16 (14 marks) Use a new writing booklet.

(a) (i) Given that a > 0, b > 0, prove that

$$a + b \ge 2\sqrt{ab}$$

(ii) Hence, show that  $\sec^2 x \ge 2 \tan x$ .

(iii) Prove that, for all integers 
$$n \ge 0$$
 and  $x \in (0, \frac{\pi}{2})$ , 3

$$\sec^{2n} x + \csc^{2n} x \ge 2^{n+1}$$

(b) Let 
$$I_n = \int_0^a x^n \sqrt{a^2 - x^2} \, dx$$
,  $a \in \mathbb{R}^+$  and  $n = 0, 1, 2, ...$ 

(i) Prove that, for n = 2, 3, 4, ...

$$I_n = \frac{a^2(n-1)}{n+2}I_{n-2}$$

(ii) Prove that, for n = 0, 1, 2, ...

$$I_{2n} = \pi \left(\frac{a}{2}\right)^{2n+2} \frac{(2n)!}{n! (n+1)!}$$

(iii) 
$$C_n = \frac{1}{n+1} {\binom{2n}{n}}$$
 denotes the Catalan numbers.

Prove that

$$C_n = \frac{1}{\pi} \int_0^2 x^{2n} \sqrt{4 - x^2} \, dx$$

#### **End of Paper**

2

3

3

|   | _ |   |    |
|---|---|---|----|
| ۰ |   |   | ۰. |
|   |   |   |    |
|   |   |   |    |
| 4 |   | 1 | 4  |
|   |   |   |    |
|   |   |   |    |

Blank page

2023 Trial Examination 2023 Mathematics Extension 2 Solutions

5) 
$$\int toxton^* x \, dx = \int tox(sec^2 x - 1) \, dx$$
  
=  $\int toxsec^2 x - tox \, dx$   
=  $\frac{ton^* x}{2} + \ln|\cos x| + C$  (B)

6) ©

8) 
$$\ddot{x} = \frac{d}{dx}(-2x^2 + 12x - 17)$$
  
=  $-4x + 12$   
=  $-4(x - 5)$   
 $\therefore 3$ 



Ilai) 
$$I+J\overline{3}i = 2(\cos \overline{3} + i\sin n\overline{3})$$
 $I+i = J\overline{2}(\cos \overline{3} + i\sin n\overline{3})$ 
 $I+i = J\overline{2}(\cos \overline{3} + i\sin n\overline{3})$ 
 $\vdots \frac{I+J\overline{3}i}{I+i} = \frac{2(\cos \overline{3} + i\sin n\overline{3})}{J\overline{2}(\cos \overline{3} + i\sin n\overline{3})}$ 
 $I= \frac{2}{J\overline{2}}(\cos \overline{3} + i\sin n\overline{3})$ 
 $I= J\overline{2}(\cos \overline{3} + i\overline{3})$ 
 $I= J\overline{2}(\cos \overline{3} + i\overline$ 

·· n=12

| Ь)<br>А  | B C     | $\overrightarrow{AB} = \frac{2}{3}\overrightarrow{AC}$                                                |                                                                                        |
|----------|---------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| (-1,0,3) | (3,9,5) | $\begin{pmatrix} 1 \\ a \\ z \end{pmatrix} = \frac{2}{3} \begin{pmatrix} 6 \\ 3 \\ b-3 \end{pmatrix}$ | Lots of -takes                                                                         |
|          |         | ∴ q==3×3                                                                                              | silly manual                                                                           |
|          |         | = 2<br>2====(b-3)                                                                                     | $\begin{pmatrix}3\\q\\s\end{pmatrix}=\frac{2}{3}\begin{pmatrix}6\\3\\b-3\end{pmatrix}$ |
|          |         | 6-3=3                                                                                                 | not realising                                                                          |
|          |         | 6=6                                                                                                   | 37 3×6                                                                                 |
|          |         | : a=2, b=6                                                                                            |                                                                                        |

ci) 
$$-3-4i = (x+iy)^2$$
  
 $= x^2 - y^2 + 2xyi$   
Equate  $2ei - 3 = x^2 - y^2$  Well done  
Equate  $1ni - 4 = 2xyi$   
 $-2 = xyi$   
 $x = \pm 1, y = \pm 2$   
 $ii) = \frac{3\pm \sqrt{(3)^2 - 4(1)(3\pm i)}}{2\times 1}$   
 $= \frac{3\pm \sqrt{(-3)^2 - 4(1)(3\pm i)}}{2\times 1}$   
 $= \frac{3\pm \sqrt{(-3)^2 - 4(1)(3\pm i)}}{2\times 1}$   
 $= \frac{3\pm \sqrt{(-3)^2 - 4(1)(3\pm i)}}{2\times 1}$   
 $= 2 - i \text{ or } 1 \pm i$   
di)  $\ddot{x} = \sqrt{\frac{dy}{dx}}$  Some students could not  
 $= -0.3x(-0.3)$  Monipulate  $v = -0.3x$   
 $= 0.09x$  by  
 $\ddot{x}$  motion is not simple hermonic as it is not off  
the form  $\ddot{x} = -n^2x$   
ii)  $\frac{dx}{dt} = -0.3x$   
 $\int_{-0.3}^{\frac{1}{2}} dx = \int_{0}^{+} 0.3 dt$  attempted to missmate  
 $[\ln|x_1|]_{6}^{4} = [-0.3\pm 1]_{0}^{4}$  both sides to get  
 $x = -\frac{0.3x^2}{2} + C$   
Subdents who recognised  
here  $x = 2i$  were generally  
 $x = \frac{\sin 3}{3} \ln \frac{1}{3}$   
 $= \frac{i0}{3} \ln 3$  seconds

12ai) For all posible integers k, there exists some integer x such that x<sup>2</sup>+x-k=0 Well done

ii) Assume for a contradiction that:

p is odd and  $x^2+x-p^2=0$  has integer solubins  $\therefore p=2u+1, k \in \mathbb{Z}$   $x^2+x-(2k+1)^2 = x^2+x-4u^2-4k-1$  integer solubions."  $x^2+x-(2k+1)^2 = x^2+x-4u^2-4k-1$  integer solubions." Case I: x is even =>  $x=2m, m \in \mathbb{Z}$   $x^2+x-p^2 = (2m)^2+(2m)-4k^2-4k-1$   $= 4m^2+2m-4k^2-4k-1$   $= 2(2m^2+m-2k^2-2k)-1$  which is odd  $\therefore x \text{ cannot be even}$  $x^2+x-p^2 = (2n+1)^2+(2n+1)-4k^2-4k-1$ 

$$= 4n^{2} + 4n + 1 + 2n + 1 - 4u^{2} - 4u - 1$$
  
= 2(2n^{2} + 3n - 2u^{2} - 2u) + 1 which is  
odd so  $\neq 0$ 

: x cannot be sold

- $\therefore x \text{ cennot be even nor odd which conhedicts}$  $x^2 + x - p^2 = 0$  hes integer solutions
- : p is odd => x2+x-p2=0 has no meger sollhons

Most not successful.  
Two successful attempts:  
1) 
$$d+p=-1$$
 and  $dp=-p^2 \rightarrow odd$   
 $\therefore d, \beta$  both odd  
 $\therefore d+\beta$  is even  
2)  $x(x+1) = p^2 \rightarrow odd$   
 $x odd = x(x+1)$  even  
 $x even \Rightarrow x(x+1)$  even

bi) 
$$\zeta_1: \quad \underline{c}_1(t) = \begin{pmatrix} e_3 \\ g \end{pmatrix} + t \begin{pmatrix} \frac{1}{2} \\ 2 \end{pmatrix}$$
  
 $\zeta_2: \quad \underline{c}_3(t) = \begin{pmatrix} -\frac{2}{1} \\ -\frac{1}{4} \end{pmatrix} + \lambda \begin{pmatrix} \frac{2}{3} \\ g \end{pmatrix}$   
Equale  $\chi, y_1 \in :$   
 $2+t=2+2\lambda \Rightarrow t=2\lambda$  (i)  
 $-t=-1-\lambda \Rightarrow t=1+\lambda$  (i)  
 $3+2t=4+3\lambda$  (j)  
Equate (i) and (i):  
 $2\lambda = 1+\lambda$  (nost recognized)  
 $\lambda = 1$  (b equale  $\chi, y_1 \in :$   
 $2\lambda = 1+\lambda$  (nost recognized)  
 $\lambda = 1$  (b equale  $\chi, y_1 \in :$   
 $2\lambda = 0$  (i)  $\xi = 1$  (components)  
 $3+2\times2 = 7$   
 $4+3(1) = 7$   
 $\vdots$   $f_1$  and  $f_2$  intersect  
(ii)  $b_1 = \begin{pmatrix} -\frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$   
 $b_2 = \begin{pmatrix} -\frac{1}{3} \\ \frac{1}{2} + 1 + \frac{1}{2} + \frac{1}{2}$ 

| v=12<br>e) + + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\ddot{x} = -n^2 x = \frac{d}{dx} (\frac{1}{2}v^2)$<br>$\therefore \frac{1}{2}v^2 = -\frac{n^2 x^2}{2} + C$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Some considered<br>x = asin(at+d)+c<br>x = ancos(at+d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | When $x = 8$ , $y = 0$ :<br>$0 = -\frac{n^2 \times 8^2}{2} + C$                                             |
| and $sh^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+cos^2(nt+1)+c$ | $C = 32n^{-1}$<br>$L = -\frac{n^{2}x^{2}}{2} + 32n^{2}$<br>When $x = 4$ , $x = 12$ :                        |
| (x-C) + (an) = (<br>Emore successful<br>nethod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{1}{2} \times 12^2 = -\frac{n^2 \times 4^2}{2} + 32n^2$                                               |
| Others found the<br>value of net d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $n^{2} = 3$<br>$n = \pm \sqrt{3}$                                                                           |
| to find a and hence 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $T = \frac{2\pi}{53}$ seconds                                                                               |

di) 
$$\frac{1}{x(1+x^2)} = \frac{a(1+x^2) + x(bx+c)}{x(1+x^2)}$$
  
 $l = a + ax^2 + bx^2 + cx$   
Equating coefficients:  
 $a = l$   
 $c = 0$  Well done.  
 $a + b = 0$   
 $b = -l$   
 $\therefore a = 1, b = -1, c = 0$   
ii)  $u = tan^{-1}x$   $v' = \frac{1}{x^2}$  Well done.  
 $u' = \frac{1}{1+x^2}$   $v = \frac{-1}{x}$  Most can concorr  
 $\int \frac{arctax}{x^2} dx = -\frac{tan^{-1}x}{x} + \int \frac{1}{x(1+x^2)} dx$  careful of negatives.  
 $= -\frac{tan^{-1}x}{x} + \int \frac{1}{x} - \frac{x}{1+x^2} dx$  and +c's.  
 $= -\frac{tan^{-1}x}{x} + ln|x| - \frac{1}{2}ln|(+x^2) + c$ 

13ai) 
$$\ddot{x} = -kv^3 = v \frac{dv}{dx}$$
  
 $-kv^2 = \frac{dv}{dx}$   
 $\int_0^x - k dx = \int_{-1}^{v_1} \frac{1}{v^2} dv$   
 $\left[-kx\right]_0^x = \left[-\frac{1}{v}\right]_u^v$   
 $-kx + 0 = -\frac{1}{v} + \frac{1}{u}$   
 $\frac{1}{v} = \frac{1}{u} + kx$   
 $= \frac{1 + kux}{u}$   
 $v = \frac{u}{u}$   
 $i) \frac{dv}{dt} = -kv^3$   
 $\int_{-\frac{1}{2}v^2} \frac{1}{u} = \left[-kt\right]_0^z$   
 $\frac{-1}{2v^2} + \frac{1}{2u^2} = -kt + 0$   
 $kt = \frac{1}{2v^2} - \frac{1}{2u^2}$   
 $t = \frac{1}{2kv^2} - \frac{1}{2u^2}$   
Uhen  $v = \frac{u}{3}$ :  
 $t = \frac{1}{2kv^2} - \frac{1}{2ku^2}$ 

 $=\frac{4}{4u^2}$ 

Done oh. mos + recognised $\ddot{x} = \sqrt{\frac{dv}{dx}}$ 

b) 
$$x = 3 \sec \Theta = 2 \frac{x}{3} = \sec \Theta = 2 \cos \Theta = \frac{3}{x}$$
  

$$\frac{dx}{d\Theta} = -3(\cos \Theta)^{-2} \times -\sin \Theta$$

$$dx = \frac{3 \sin \Theta}{\cos^2 \Theta} d\Theta$$

$$I = \int \frac{x}{(3 \sec \Theta)^2 \int (3 \sec \Theta)^2 - 9} \times \frac{x}{\cos^2 \Theta} d\Theta$$

$$= \int \frac{3 \sin \Theta}{3 \int \tan^2 \Theta} d\Theta \quad (val'd \neq ue pict \Theta + 0 be in 1st)$$

$$= \frac{1}{3} \int \cos \Theta d\Theta$$

$$= \frac{1}{3} \sin \Theta + C \qquad x = 3 \sec \Theta$$
Those that did could integrate to  $\frac{1}{3} \sin \Theta + C$ .  

$$\sum ne students could not integrate to  $\frac{1}{3} \sin \Theta + C$ .  

$$\sum ne students could not integrate to  $\frac{1}{3} \sin \Theta + C$ .  

$$= \frac{1}{3} \sqrt{\frac{x^2 - 9}{x^2}} + C \qquad context (y others) the thing (e to the to the to the to the to$$$$$$

e) Let 
$$\neq = x + iy$$
:  

$$\frac{z-z}{z-i} = \frac{(x-z)+iy}{x+i(y-i)} \times \frac{x-i(y-i)}{x-i(y-i)}$$

$$= \frac{x(x-z)+i(x-z)(y-i)+ixy+y(y-i)}{x^2+(y-i)^2}$$
Re $\left(\frac{z-z}{z-i}\right) = 0$  so  

$$\frac{x(x-2)+y(y-i)}{x^2+(y-i)^2} = 0$$
Poorly done.  
Many tried to treatise?  

$$x^2-2x+y^2-y=0$$
by  $\frac{z-z}{z-i} \times \frac{z+i}{z+i}$ 
 $(x-i)^2+(y-\frac{1}{2})^2 = 1+\frac{1}{4}$ 
Some thought to solve  
 $(x-i)^2+(y-\frac{1}{2})^2 = (\frac{\sqrt{5}}{2})^2$ 
Im $\left(\frac{z-z}{z-i}\right) = 0$ 
Im $\left$ 

di) 
$$\omega^{s} = 1$$
  
 $\omega^{s} - 1 = 0$   
 $(\omega - 1)(\omega^{4} + \omega^{3} + \omega^{2} + \omega + 1) = 0$  Stodents should be  
Since  $\omega$  is non-real,  $\omega \neq 1$  reminded to stake  
 $\therefore \omega^{4} + \omega^{3} + \omega^{2} + \omega + 1 = 0$  that  $\omega \neq 1$  es  $\omega$  is  
 $(\omega - \omega^{4})^{2} = \omega^{2} - 2\omega^{2} + \omega^{8}$   
 $= \omega^{2} + \omega^{3} - 2$  since  $\omega^{s} = 1$   
 $\therefore (\omega - \omega^{4})^{4} + 5(\omega^{2} - \omega^{4})^{2} + 5$  stodents who  
 $= (\omega^{4} + \omega^{3} - 2)^{2} + 5(\omega^{2} + \omega^{3} - 2) + 5$  and well.  
 $= (\omega^{4} + \omega^{5} - 2\omega^{2} + \omega^{5} + \omega^{6} - 2\omega^{3} - 2\omega^{2} - 2\omega^{3} + 4$   
 $+ 5\omega^{2} + 5\omega^{3} - 10 + 5$  stodents who any  
 $= \omega^{4} + 1 - 2\omega^{2} + 1 + \omega - 2\omega^{3} - 2\omega^{2} - 2\omega^{3} + 4 + 5\omega^{2} + 5\omega^{2} + 5\omega^{3} - 5$   
 $= \omega^{4} + \omega^{3} + \omega^{2} + \omega + 1$  of may.  
 $= 0$ 

(4a) When n= D:  

$$q_0 = \frac{O(0+1)(2\times 0+1)}{2}$$
 Many students used  
 $n=1$  as the base case.  
 $=0$  Most could prove the for  
 $n=k+1$ , given n=k.  
Assume that for n=k,  
 $i \cdot e \cdot a_k = \frac{k(k+1)(2k+1)}{2}$  D  
When n=k+1,  
 $a_{k+1} = a_k + 3(k+1)^2$  using recursive definition  
 $= \frac{k(k+1)(2k+1)}{2} + 3(k+1)^2$  using C  
 $= \frac{(k+1)[k(2k+1)+6(k+1)]}{2}$   
 $= \frac{(k+1)(2k^2+k+6k+6)}{2}$   
 $= \frac{(k+1)(2k^2+4k+3k+6)}{2}$   
 $= \frac{(k+1)(2k+3)(k+2)}{2}$   
 $= \frac{(k+1)(2k+3)(k+2)}{2}$ 

bi)  

$$A\vec{k} = 2\underline{u} + \underline{v}$$
  
 $A\vec{k} = 2\underline{u} + \underline{v}$   
 $A\vec{k} = \underline{u} + \underline{u} + \underline{v}$   
 $(2u - 1 - \underline{u}) \underline{u} = (2u - u) \underline{v}$   
Since  $\underline{u} + \underline{v}$ ,  $2u - 1 - u = 0$  and  $2u - u = 0$   
 $\therefore \quad u = \frac{u}{2}$   
 $2u - 1 - \frac{u}{2} = 0$   
 $A\vec{k} = \underline{u}$   
 $\vec{k} = \frac{2}{3}$   
 $eq aded$   
ii)  $A\vec{c} = 2\underline{u} + 2\underline{v}$   
 $A\vec{F} = \underline{u} + \underline{v}$   
 $\vec{F}\vec{B} = -(\underline{u} + \underline{v}) + \frac{2}{3}(2\underline{u} + \underline{v})$   
 $= \frac{1}{3}\underline{u} - \frac{1}{3}\underline{v}$   
 $\vec{F}\vec{B} = -(\underline{u} + \underline{v}) + 2\underline{u}$   
 $= \underline{u} - \underline{v}$   
 $= 3\vec{F}\vec{P}$   
Since FBIIFF and shares convert point F,  
F, B, P are collinear

ci) 
$$E^{n} + \frac{1}{2n} = (ass - isin \Theta)^{n} + (ass + isin \Theta)^{-n}$$
  
=  $css(n\Theta) + isin(n\Theta) + ass(-n\Theta) + isin(-n\Theta)$   
Shounds should using Demonutules Thm  
be reminated =  $cos(n\Theta) + isin(n\Theta) + cos(n\Theta) - isin(n\Theta)$   
Lo stake the  
use of =  $2cos(n\Theta)$   
ii)  $(E + \frac{1}{2})^{1} = E^{-1} + 4E^{2}(\frac{1}{2}) + 6E^{2}(\frac{1}{2})^{2} + 4E(\frac{1}{2})^{3} + (\frac{1}{2})^{4}$   
 $= (E^{-1} + \frac{1}{2}) + 4(E^{2} + \frac{1}{2}) + 6$   
Using (i):  
(2cos  $\Theta$ )<sup>4</sup> =  $2cos + \Theta + 4 \times 2cos + 6$   
 $cos^{4}\Theta = 2cos + \Theta + 4 \times 2cos + 6$   
 $cos^{4}\Theta = \frac{1}{2}cos + \Theta + \frac{1}{2}cos + 2\Theta + \frac{3}{8}$   
iii)  $\int_{0}^{\pi/2} cos^{4}\Theta = \int_{0}^{\pi/2} \frac{1}{8}cos + \Theta + \frac{1}{2}cos + 2\Theta + \frac{3}{8} d\Theta$   
 $= \left[\frac{3m+\Theta}{8\pi4} + \frac{3m2\Theta}{2\pi2} + \frac{3}{8}\Theta\right]_{0}^{\pi/2}$   
Generally utth  
 $dore. = \left(\frac{3m2\pi}{42} + \frac{3m\pi}{4} + \frac{3}{8} \times \frac{\pi}{2}\right)$   
Shalent's need  $-\left(\frac{3mO}{22} + \frac{3mO}{4} + \frac{3}{8} \times 0\right)$   
of exact  $= \frac{3\pi}{16}$ 

15a) When 
$$y=0$$
:  
 $2 \times \ln x = 0$   
 $x = 1$   
From  $x = \frac{1}{2}$  to  $x = 1$ ,  $y = 2 \times \ln x < 0$   
 $I = \int_{1/e}^{1} 2 \times \ln x \, dx$  may forget to  
 $u = \ln x$   $v' = 2x$  and forget to  
 $u = \ln x$   $v' = 2x$  and forget to  
 $u' = \frac{1}{2}$   $v = x^2$  are associated (as but  
 $I = \left[ x^2 \ln x \right]_{1/e}^{1} - \int_{1/e}^{1/e} \frac{x^2}{x} \, dx$  Some need to be  
 $= 1^2 \ln 1 - (\frac{1}{2})^2 \ln (\frac{1}{2}) - \left[ \frac{x^2}{2} \right]_{1/e}^{1/e}$  each 1 with signs.  
 $= \frac{1}{e^2} - \frac{1^2}{2} + \frac{1}{2e^2}$   
 $= \frac{3}{2e^2} - \frac{1}{2}$   
 $\therefore A_1 = \frac{1}{2} - \frac{3}{2e^2}$   
From  $x = 1$  to  $x = e$ ,  $y = 2 \times \ln x > D$   
 $I = \left[ x^2 \ln e - 1^2 \ln 1 - \frac{e^2}{2} + \frac{1}{2} \right]$   
 $\therefore A_2 = \frac{e^2}{2} + \frac{1}{2}$   
 $\therefore A_{2} = \frac{e^2}{2} + \frac{1}{2}$ 

bi) When 
$$n = 1$$
:  
 $RHS = \frac{1 - (1 + i)E^{1} + E^{2}}{(1 - E)^{2}}$   
 $= \frac{(1 - E)^{2}}{(1 - E)^{2}}$   
 $= 1$   
 $= LHS$   
 $: + Are for n = 1$   
Assume + Are for n = h,  
 $i \cdot e \cdot 1 + 2e + 3e^{2} + ... + he^{h - i} = \frac{1 - (h + i)e^{h} + he^{h + i}}{(1 - E)^{2}}$  (0)  
When n = ht 1,  
 $LHS = (+2e + 3e^{2} + ... + he^{h - i} + (h + i)e^{h})$   
 $= \frac{1 - (h + i)e^{h} + he^{h + i}}{(1 - E)^{2}} + (h + i)e^{h}$   
 $= \frac{1 - (h + i)e^{h} + he^{h + i}}{(1 - E)^{2}} + (h + i)e^{h} (1 - 2e + e^{2})}$   
 $= \frac{1 - (h + i)e^{h} + he^{h + i} + (h + i)e^{h} (1 - 2e + e^{2})}{(1 - E)^{2}}$   
 $= \frac{1 - (h + i)e^{h} + he^{h + i} + (h + i)e^{h} - 2(h + i)e^{h + i} + (h + i)e^{h + i}}{(1 - E)^{2}}$   
 $= \frac{1 - (h + 2)e^{h + i} + (h + i)e^{h + 2}}{(1 - E)^{2}}$   
 $= \frac{1 - (h + 2)e^{h + i} + (h + i)e^{h + 2}}{(1 - E)^{2}}$ 

: the for neht 1

Since the for n=k+1 whenever it is thre for n=k, and it is thre for n=1,  $\therefore$  by mathematical moluchion it is the for all integers  $n \ge 1$ .

| ;;) Sub z=2;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ +2(\frac{1}{2})+3(\frac{1}{2})^{2}+4(\frac{1}{2})^{3}++n(\frac{1}{2})^{n-1}=\frac{1-(n+1)(2)+n(2)}{(1-\frac{1}{2})^{n}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\frac{2}{2} + \frac{3}{2^2} + \frac{4}{2^3} + \dots + \frac{1}{2^{n-1}} = \frac{1 - \frac{1}{2^n} + \frac{1}{2^{n+1}}}{\frac{1}{2^2}} - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $2 + \frac{3}{2} + \frac{4}{2^2} + \dots + \frac{n}{2^{n-2}} = \frac{2 - \frac{n+1}{2^{n-1}} + \frac{n}{2^n}}{\frac{1}{2^2}} - 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Qii onwards not attempted $\frac{2}{2(2^n) - 2(n+1) + n} = \frac{1}{1 - x 2^n} - 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $z = \frac{1}{2}, b, t = \frac{1}{2^{n-2}} - 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| the result $= 2^3 - \frac{n+2}{2^{n-2}} - 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $= 6 - \frac{n+2}{z^{n-2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\frac{1}{11} + 22 + 32^{2} + + \eta e^{\eta - 1} = \frac{1 - (\eta + 1)e^{\eta} + \eta e^{\eta - 1}}{(1 - e)^{2}} + \frac{1}{1 - (\eta + 1)e^{\eta}} + $ |
| Most who attempted = $\frac{z - (1+1)}{z} = \frac{z}{z}$<br>knev Lo dwide (i) by $\frac{z}{z} - \frac{z}{z} + \frac{z}{z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $z - s$ bolocher $= \frac{z^{-1} - (n+1)z^{n-1} + nz^{n}}{z^{-1} - 2+z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| explicit with show questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

$$\frac{(c^{3}8)^{-1} - (n+1)(c^{3}8)^{-1}}{(c^{3}8)^{-1} - 2 + (c^{3}8)^{-1}} = \frac{(c^{3}8)^{-1}}{(c^{3}8)^{-1} - 2 + (c^{3}8)^{-1}}$$

$$\frac{(c^{3}8)^{-1} - 2 + (c^{3}8)^{-1}}{(c^{3}8)^{-1} - 2 + (c^{3}8)^{-1}}$$

$$Using Pe Moivels Thm:$$

$$c^{3}(-8)^{-1}(n+1)c^{3}(n-1)8$$

$$= \frac{\cos(-\theta) - (n+1)\cos(n-1)\theta + n\cos(n\theta)}{2\cos\theta - 2}$$

Equere real parts: cos(-8) - (n+1)cos(n-1)81+2cos(+3cos(-1)+1) + ncos(n-1)8 = + ncos(n+1)2cos(-1)2cos(-1)8 = -2nk=12cos(n-1)8 = -2-2(1-cos(-1))-2(1-cos(-1))

$$= \frac{(n+1)ces(n-1)\Theta - nces(n\Theta) - ces\Theta}{2(1-ces\Theta)}$$

most attempts recognised taking the real parts of both sides. Students need to be careful of arithmetic errors.

16ai) (Ja-J6)2>0 well done a-25eb+b>0 a+6 > 2 Jab ii) Let a=tan=x, b=1: nost students recognised  $ten^2x+1 \ge 2\sqrt{ten^2x\times 1}$ a= tan x, b=1 Sec<sup>2</sup>x > 2 |tanx1 Students shall be > 2 tenx reminded that iii) Let  $a = cot^2 x$ , b = 1: Startx = |tanx > tanx 0+=×+1 > 2 J0+=××1 cosec<sup>2</sup>x > 2 ] co+×1 >200+× attempted: (sec<sup>2</sup>x) > (2tanx) and (cosec<sup>2</sup>x) > (2cotx) marching since  $x \in (0, \frac{\pi}{2})$ for correct: sec<sup>2</sup> × > 2 ton x and cosec<sup>2</sup> x > 2 cot x  $\sec^{2n} \times + \csc^{2n} \times \geq 2^{1} \tan^{1} \times + 2^{1} \cot^{1} \times$ best case.  $\geq 2^{(+\alpha)} \times + \infty + \infty$ Two clever attempts: > 2 × 2 Itan xeot x using (i) i)  $\sec^{2n} x \ge 2^{1} + an^{2} \times an^{2}$ > 21 × 2 JT using (ii) > 2^+  $\frac{\sec^{2n} \times}{\tan^{2} \times} \geq 2^{n}, \times \neq 0$ 2 cosn x sinn x > 2"+" (  $sec^{2n} \times + cosec^{2n} \times \ge 2 \int sec^{2n} \times cosec^{2n} \times u sing(i)$  $\geq \frac{2}{\cos^3 x \sin^3 x}$ > 2n+1 Usmg 2) sec<sup>2</sup> x + casec<sup>2</sup> x > 2) sec<sup>2</sup> x casec<sup>2</sup> x using (i)  $\gtrsim \frac{2}{\cos^3 x \sin^3 x}$ > 20+1 > 2"+" since sin 2x ≤1 as sin 2x ≤1

L:) 
$$u = x^{n-1}$$
  $v' = x \int a^{2} - x^{2}$   
 $u' = (n-1)x^{n-2}$   $v = -\frac{1}{2} \left( \frac{a^{2} - x^{2}}{3x} \right)^{3/2}$   
 $= -\frac{1}{3} (a^{2} - x^{2})^{3/2}$   
 $I_{n} = \left[ -\frac{x^{n-1} (a^{2} - x^{2})^{3/2}}{3} \right]_{0}^{n} + \int_{0}^{n} \frac{(n-1)x^{n-2}}{3} (a^{2} - x^{2})^{3/2} dx$   
 $= -\frac{a^{n-1} (a^{2} - a^{2})}{3} + \frac{a^{n-1} (a^{2} - a^{2})}{3} + \frac{(n-1)}{3} \int_{0}^{a} x^{n-2} (a^{2} - x^{2})^{3/2} dx$   
 $= \frac{n^{-1}}{3} \int_{0}^{a} x^{n-2} \sqrt{a^{2} - x^{2}} = x^{n} \int a^{2} - x^{2} dx$   
 $= \frac{n^{-1}}{3} \int_{0}^{a} a^{2} x^{n-2} \sqrt{a^{2} - x^{2}} = x^{n} \sqrt{a^{2} - x^{2}} dx$   
 $= \frac{n^{-1}}{3} \int_{0}^{a} a^{2} x^{n-2} \sqrt{a^{2} - x^{2}} = x^{n} \sqrt{a^{2} - x^{2}} dx$   
 $= \frac{n^{-1}}{3} \int_{0}^{a} a^{2} x^{n-2} \sqrt{a^{2} - x^{2}} = x^{n} \sqrt{a^{2} - x^{2}} dx$   
 $= \frac{n^{-1}}{3} \int_{0}^{a} a^{2} x^{n-2} \sqrt{a^{2} - x^{2}} = x^{n} \sqrt{a^{2} - x^{2}} dx$   
 $= \frac{n^{-1}}{3} \int_{0}^{a} a^{2} x^{n-2} \sqrt{a^{2} - x^{2}} = x^{n} \sqrt{a^{2} - x^{2}} dx$   
 $= \frac{n^{-1}}{3} \int_{0}^{a} a^{2} x^{n-2} \sqrt{a^{2} - x^{2}} = x^{n} \sqrt{a^{2} - x^{2}} dx$   
 $= \frac{n^{-1}}{3} \int_{0}^{a} a^{2} x^{n-2} \sqrt{a^{2} - x^{2}} = x^{n} \sqrt{a^{2} - x^{2}} dx$   
 $I_{n} + \frac{n^{-1}}{3} I_{n} = \frac{a^{2}(n-1)}{2n} I_{n-2}$  the convect  $u$  and  $v'$   
 $(n+2)I_{n} = a^{2}(n-1) I_{n-2}$  the convect  $u$  and  $v'$   
 $(n+2)I_{n} = a^{2}(n-1) I_{n-2}$  the convect  $u$  and  $v'$   
 $(n+2)I_{n} = a^{2}(n-1) I_{n-2}$  the convect  $u$  and  $v'$   
 $I_{n} = \frac{a^{2}(2n-1)}{2n+2} I_{n-2}$   $v$  inconvects  
 $I_{n} = \frac{a^{2}(2n-1)}{2n+2} I_{n-2}$   $v$  inconvects  
 $= \frac{a^{2}(2n-1)}{(2n+2)} x^{2} \frac{a^{2}(2n-2-1)}{2n-2} I_{n-4}$   $I_{n} + I_{n} + I_{n}$ 

$$= \frac{a^{2n+2}\pi}{2^{n+2}} \times \frac{(2n)!}{(n+1)! \times 2^n \times n(n-1)(n-2)...1}$$

$$= \frac{a^{2n+2}\pi (2n)!}{2^{n+2} \times 2^n (n+1)! n!}$$

$$= \pi \left(\frac{a}{2}\right)^{2n+2} \frac{(2n)!}{n! (n+1)!}$$
iii)  $C_n = \frac{1}{n+1} \left(\frac{2n}{n}\right)$ 

$$= \frac{1}{n+1} \frac{(2n)!}{n! (2n-n)!}$$

$$= \frac{(2n)!}{n! (2n-n)!}$$

$$= \frac{(2n)!}{n! (2n-n)!}$$

$$= \frac{(2n)!}{n! (2n-n)!}$$

$$= \frac{1}{\pi} \times \pi \left(\frac{2}{2}\right)^{2n+2} \frac{(2n)!}{n! (n+1)!}$$

$$= \frac{1}{\pi} \int_0^2 \chi^2 \sqrt{4-\chi^2} d\chi$$

$$= \frac{1}{\pi} \int_0^2 \chi^2 \sqrt{4-\chi^2} d\chi$$